\(\int \frac {(a+a \cos (c+d x))^2 (A+B \cos (c+d x)+C \cos ^2(c+d x))}{\cos ^{\frac {11}{2}}(c+d x)} \, dx\) [446]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (warning: unable to verify)
   Maple [B] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 43, antiderivative size = 251 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {4 a^2 (8 A+9 B+12 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^2 (5 A+6 B+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 (5 A+6 B+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (8 A+9 B+12 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)} \]

[Out]

-4/15*a^2*(8*A+9*B+12*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticE(sin(1/2*d*x+1/2*c),2^(1/2))
/d+4/21*a^2*(5*A+6*B+7*C)*(cos(1/2*d*x+1/2*c)^2)^(1/2)/cos(1/2*d*x+1/2*c)*EllipticF(sin(1/2*d*x+1/2*c),2^(1/2)
)/d+2/105*a^2*(19*A+27*B+21*C)*sin(d*x+c)/d/cos(d*x+c)^(5/2)+4/21*a^2*(5*A+6*B+7*C)*sin(d*x+c)/d/cos(d*x+c)^(3
/2)+2/9*A*(a+a*cos(d*x+c))^2*sin(d*x+c)/d/cos(d*x+c)^(9/2)+2/63*(4*A+9*B)*(a^2+a^2*cos(d*x+c))*sin(d*x+c)/d/co
s(d*x+c)^(7/2)+4/15*a^2*(8*A+9*B+12*C)*sin(d*x+c)/d/cos(d*x+c)^(1/2)

Rubi [A] (verified)

Time = 0.63 (sec) , antiderivative size = 251, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.186, Rules used = {3122, 3054, 3047, 3100, 2827, 2716, 2720, 2719} \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {4 a^2 (5 A+6 B+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}-\frac {4 a^2 (8 A+9 B+12 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^2 (5 A+6 B+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 (8 A+9 B+12 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 (4 A+9 B) \sin (c+d x) \left (a^2 \cos (c+d x)+a^2\right )}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {2 A \sin (c+d x) (a \cos (c+d x)+a)^2}{9 d \cos ^{\frac {9}{2}}(c+d x)} \]

[In]

Int[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

(-4*a^2*(8*A + 9*B + 12*C)*EllipticE[(c + d*x)/2, 2])/(15*d) + (4*a^2*(5*A + 6*B + 7*C)*EllipticF[(c + d*x)/2,
 2])/(21*d) + (2*a^2*(19*A + 27*B + 21*C)*Sin[c + d*x])/(105*d*Cos[c + d*x]^(5/2)) + (4*a^2*(5*A + 6*B + 7*C)*
Sin[c + d*x])/(21*d*Cos[c + d*x]^(3/2)) + (4*a^2*(8*A + 9*B + 12*C)*Sin[c + d*x])/(15*d*Sqrt[Cos[c + d*x]]) +
(2*A*(a + a*Cos[c + d*x])^2*Sin[c + d*x])/(9*d*Cos[c + d*x]^(9/2)) + (2*(4*A + 9*B)*(a^2 + a^2*Cos[c + d*x])*S
in[c + d*x])/(63*d*Cos[c + d*x]^(7/2))

Rule 2716

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[Cos[c + d*x]*((b*Sin[c + d*x])^(n + 1)/(b*d*(n + 1
))), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2720

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticF[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ
[{c, d}, x]

Rule 2827

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 3047

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Int[(a + b*Sin[e + f*x])^m*(A*c + (B*c + A*d)*Sin[e + f*x] + B*d*Sin[e + f*x
]^2), x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0]

Rule 3054

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*sin[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b^2)*(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^(m - 1)*((c + d
*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(b*c + a*d))), x] - Dist[b/(d*(n + 1)*(b*c + a*d)), Int[(a + b*Sin[e + f*x
])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1)*Simp[a*A*d*(m - n - 2) - B*(a*c*(m - 1) + b*d*(n + 1)) - (A*b*d*(m + n
 + 1) - B*(b*c*m - a*d*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a
*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[m, 1/2] && LtQ[n, -1] && IntegerQ[2*m] && (IntegerQ[2*
n] || EqQ[c, 0])

Rule 3100

Int[((a_.) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f
_.)*(x_)]^2), x_Symbol] :> Simp[(-(A*b^2 - a*b*B + a^2*C))*Cos[e + f*x]*((a + b*Sin[e + f*x])^(m + 1)/(b*f*(m
+ 1)*(a^2 - b^2))), x] + Dist[1/(b*(m + 1)*(a^2 - b^2)), Int[(a + b*Sin[e + f*x])^(m + 1)*Simp[b*(a*A - b*B +
a*C)*(m + 1) - (A*b^2 - a*b*B + a^2*C + b*(A*b - a*B + b*C)*(m + 1))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b,
e, f, A, B, C}, x] && LtQ[m, -1] && NeQ[a^2 - b^2, 0]

Rule 3122

Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((A_.) + (B_.)*s
in[(e_.) + (f_.)*(x_)] + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> Simp[(-(c^2*C - B*c*d + A*d^2))*Cos[e
+ f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Dist[1/(b*d*(n +
1)*(c^2 - d^2)), Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a*d*m + b*c*(n + 1)) + (c*C
 - B*d)*(a*c*m + b*d*(n + 1)) + b*(d*(B*c - A*d)*(m + n + 2) - C*(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x]
, x], x] /; FreeQ[{a, b, c, d, e, f, A, B, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^
2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])

Rubi steps \begin{align*} \text {integral}& = \frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 \int \frac {(a+a \cos (c+d x))^2 \left (\frac {1}{2} a (4 A+9 B)+\frac {3}{2} a (A+3 C) \cos (c+d x)\right )}{\cos ^{\frac {9}{2}}(c+d x)} \, dx}{9 a} \\ & = \frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4 \int \frac {(a+a \cos (c+d x)) \left (\frac {3}{4} a^2 (19 A+27 B+21 C)+\frac {3}{4} a^2 (11 A+9 B+21 C) \cos (c+d x)\right )}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{63 a} \\ & = \frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {4 \int \frac {\frac {3}{4} a^3 (19 A+27 B+21 C)+\left (\frac {3}{4} a^3 (11 A+9 B+21 C)+\frac {3}{4} a^3 (19 A+27 B+21 C)\right ) \cos (c+d x)+\frac {3}{4} a^3 (11 A+9 B+21 C) \cos ^2(c+d x)}{\cos ^{\frac {7}{2}}(c+d x)} \, dx}{63 a} \\ & = \frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {8 \int \frac {\frac {45}{4} a^3 (5 A+6 B+7 C)+\frac {21}{4} a^3 (8 A+9 B+12 C) \cos (c+d x)}{\cos ^{\frac {5}{2}}(c+d x)} \, dx}{315 a} \\ & = \frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{7} \left (2 a^2 (5 A+6 B+7 C)\right ) \int \frac {1}{\cos ^{\frac {5}{2}}(c+d x)} \, dx+\frac {1}{15} \left (2 a^2 (8 A+9 B+12 C)\right ) \int \frac {1}{\cos ^{\frac {3}{2}}(c+d x)} \, dx \\ & = \frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 (5 A+6 B+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (8 A+9 B+12 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)}+\frac {1}{21} \left (2 a^2 (5 A+6 B+7 C)\right ) \int \frac {1}{\sqrt {\cos (c+d x)}} \, dx-\frac {1}{15} \left (2 a^2 (8 A+9 B+12 C)\right ) \int \sqrt {\cos (c+d x)} \, dx \\ & = -\frac {4 a^2 (8 A+9 B+12 C) E\left (\left .\frac {1}{2} (c+d x)\right |2\right )}{15 d}+\frac {4 a^2 (5 A+6 B+7 C) \operatorname {EllipticF}\left (\frac {1}{2} (c+d x),2\right )}{21 d}+\frac {2 a^2 (19 A+27 B+21 C) \sin (c+d x)}{105 d \cos ^{\frac {5}{2}}(c+d x)}+\frac {4 a^2 (5 A+6 B+7 C) \sin (c+d x)}{21 d \cos ^{\frac {3}{2}}(c+d x)}+\frac {4 a^2 (8 A+9 B+12 C) \sin (c+d x)}{15 d \sqrt {\cos (c+d x)}}+\frac {2 A (a+a \cos (c+d x))^2 \sin (c+d x)}{9 d \cos ^{\frac {9}{2}}(c+d x)}+\frac {2 (4 A+9 B) \left (a^2+a^2 \cos (c+d x)\right ) \sin (c+d x)}{63 d \cos ^{\frac {7}{2}}(c+d x)} \\ \end{align*}

Mathematica [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 11.15 (sec) , antiderivative size = 1364, normalized size of antiderivative = 5.43 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\sqrt {\cos (c+d x)} (a+a \cos (c+d x))^2 \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {(8 A+9 B+12 C) \csc (c) \sec (c)}{15 d}+\frac {A \sec (c) \sec ^5(c+d x) \sin (d x)}{18 d}+\frac {\sec (c) \sec ^4(c+d x) (7 A \sin (c)+18 A \sin (d x)+9 B \sin (d x))}{126 d}+\frac {\sec (c) \sec ^3(c+d x) (90 A \sin (c)+45 B \sin (c)+112 A \sin (d x)+126 B \sin (d x)+63 C \sin (d x))}{630 d}+\frac {\sec (c) \sec (c+d x) (25 A \sin (c)+30 B \sin (c)+35 C \sin (c)+56 A \sin (d x)+63 B \sin (d x)+84 C \sin (d x))}{105 d}+\frac {\sec (c) \sec ^2(c+d x) (112 A \sin (c)+126 B \sin (c)+63 C \sin (c)+150 A \sin (d x)+180 B \sin (d x)+210 C \sin (d x))}{630 d}\right )-\frac {5 A (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{21 d \sqrt {1+\cot ^2(c)}}-\frac {2 B (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{7 d \sqrt {1+\cot ^2(c)}}-\frac {C (a+a \cos (c+d x))^2 \csc (c) \, _2F_1\left (\frac {1}{4},\frac {1}{2};\frac {5}{4};\sin ^2(d x-\arctan (\cot (c)))\right ) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \sec (d x-\arctan (\cot (c))) \sqrt {1-\sin (d x-\arctan (\cot (c)))} \sqrt {-\sqrt {1+\cot ^2(c)} \sin (c) \sin (d x-\arctan (\cot (c)))} \sqrt {1+\sin (d x-\arctan (\cot (c)))}}{3 d \sqrt {1+\cot ^2(c)}}+\frac {4 A (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{15 d}+\frac {3 B (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{10 d}+\frac {2 C (a+a \cos (c+d x))^2 \csc (c) \sec ^4\left (\frac {c}{2}+\frac {d x}{2}\right ) \left (\frac {\, _2F_1\left (-\frac {1}{2},-\frac {1}{4};\frac {3}{4};\cos ^2(d x+\arctan (\tan (c)))\right ) \sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1-\cos (d x+\arctan (\tan (c)))} \sqrt {1+\cos (d x+\arctan (\tan (c)))} \sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}} \sqrt {1+\tan ^2(c)}}-\frac {\frac {\sin (d x+\arctan (\tan (c))) \tan (c)}{\sqrt {1+\tan ^2(c)}}+\frac {2 \cos ^2(c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}{\cos ^2(c)+\sin ^2(c)}}{\sqrt {\cos (c) \cos (d x+\arctan (\tan (c))) \sqrt {1+\tan ^2(c)}}}\right )}{5 d} \]

[In]

Integrate[((a + a*Cos[c + d*x])^2*(A + B*Cos[c + d*x] + C*Cos[c + d*x]^2))/Cos[c + d*x]^(11/2),x]

[Out]

Sqrt[Cos[c + d*x]]*(a + a*Cos[c + d*x])^2*Sec[c/2 + (d*x)/2]^4*(((8*A + 9*B + 12*C)*Csc[c]*Sec[c])/(15*d) + (A
*Sec[c]*Sec[c + d*x]^5*Sin[d*x])/(18*d) + (Sec[c]*Sec[c + d*x]^4*(7*A*Sin[c] + 18*A*Sin[d*x] + 9*B*Sin[d*x]))/
(126*d) + (Sec[c]*Sec[c + d*x]^3*(90*A*Sin[c] + 45*B*Sin[c] + 112*A*Sin[d*x] + 126*B*Sin[d*x] + 63*C*Sin[d*x])
)/(630*d) + (Sec[c]*Sec[c + d*x]*(25*A*Sin[c] + 30*B*Sin[c] + 35*C*Sin[c] + 56*A*Sin[d*x] + 63*B*Sin[d*x] + 84
*C*Sin[d*x]))/(105*d) + (Sec[c]*Sec[c + d*x]^2*(112*A*Sin[c] + 126*B*Sin[c] + 63*C*Sin[c] + 150*A*Sin[d*x] + 1
80*B*Sin[d*x] + 210*C*Sin[d*x]))/(630*d)) - (5*A*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {
5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Co
t[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(21*
d*Sqrt[1 + Cot[c]^2]) - (2*B*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcT
an[Cot[c]]]^2]*Sec[c/2 + (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[
1 + Cot[c]^2]*Sin[c]*Sin[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(7*d*Sqrt[1 + Cot[c]^2])
 - (C*(a + a*Cos[c + d*x])^2*Csc[c]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[c/2
+ (d*x)/2]^4*Sec[d*x - ArcTan[Cot[c]]]*Sqrt[1 - Sin[d*x - ArcTan[Cot[c]]]]*Sqrt[-(Sqrt[1 + Cot[c]^2]*Sin[c]*Si
n[d*x - ArcTan[Cot[c]]])]*Sqrt[1 + Sin[d*x - ArcTan[Cot[c]]]])/(3*d*Sqrt[1 + Cot[c]^2]) + (4*A*(a + a*Cos[c +
d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[
d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Co
s[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/S
qrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[
c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(15*d) + (3*B*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)
/2]^4*((HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/
(Sqrt[1 - Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]
*Sqrt[1 + Tan[c]^2]]*Sqrt[1 + Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^
2*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*S
qrt[1 + Tan[c]^2]]))/(10*d) + (2*C*(a + a*Cos[c + d*x])^2*Csc[c]*Sec[c/2 + (d*x)/2]^4*((HypergeometricPFQ[{-1/
2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/(Sqrt[1 - Cos[d*x + ArcTan[Tan
[c]]]]*Sqrt[1 + Cos[d*x + ArcTan[Tan[c]]]]*Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]*Sqrt[1 +
Tan[c]^2]) - ((Sin[d*x + ArcTan[Tan[c]]]*Tan[c])/Sqrt[1 + Tan[c]^2] + (2*Cos[c]^2*Cos[d*x + ArcTan[Tan[c]]]*Sq
rt[1 + Tan[c]^2])/(Cos[c]^2 + Sin[c]^2))/Sqrt[Cos[c]*Cos[d*x + ArcTan[Tan[c]]]*Sqrt[1 + Tan[c]^2]]))/(5*d)

Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(1153\) vs. \(2(279)=558\).

Time = 31.09 (sec) , antiderivative size = 1154, normalized size of antiderivative = 4.60

method result size
default \(\text {Expression too large to display}\) \(1154\)
parts \(\text {Expression too large to display}\) \(1425\)

[In]

int((a+cos(d*x+c)*a)^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

-8*(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*a^2*(1/4*A*(-1/144*cos(1/2*d*x+1/2*c)*(-2*sin(1/2
*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^5-7/180*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*
x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^3-14/15*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2
*c)/(-(-2*cos(1/2*d*x+1/2*c)^2+1)*sin(1/2*d*x+1/2*c)^2)^(1/2)+7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*
x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))
-7/15*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2)*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))-EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))))+1/4*C/sin(1/2*d*x+1
/2*c)^2/(2*sin(1/2*d*x+1/2*c)^2-1)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^
2*cos(1/2*d*x+1/2*c)-(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c
),2^(1/2)))+(1/2*A+1/4*B)*(-1/56*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(
1/2*d*x+1/2*c)^2-1/2)^4-5/42*cos(1/2*d*x+1/2*c)*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*
d*x+1/2*c)^2-1/2)^2+5/21*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)
^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2)))+(1/4*B+1/2*C)*(-1/6*cos(1/2*d*x+1/2*c)*(
-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/(cos(1/2*d*x+1/2*c)^2-1/2)^2+1/3*(sin(1/2*d*x+1/2*c)^2)^(1
/2)*(-2*cos(1/2*d*x+1/2*c)^2+1)^(1/2)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticF(cos(1/2*d
*x+1/2*c),2^(1/2)))+1/5*(1/4*A+1/2*B+1/4*C)/(8*sin(1/2*d*x+1/2*c)^6-12*sin(1/2*d*x+1/2*c)^4+6*sin(1/2*d*x+1/2*
c)^2-1)/sin(1/2*d*x+1/2*c)^2*(24*cos(1/2*d*x+1/2*c)*sin(1/2*d*x+1/2*c)^6-12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(
sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2))*sin(1/2*d*x+1/2*c)^4-24*sin(1/2*d*x+1/2*c)^4
*cos(1/2*d*x+1/2*c)+12*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)*EllipticE(cos(1/2*d*x+1/2
*c),2^(1/2))*sin(1/2*d*x+1/2*c)^2+8*sin(1/2*d*x+1/2*c)^2*cos(1/2*d*x+1/2*c)-3*(sin(1/2*d*x+1/2*c)^2)^(1/2)*(2*
sin(1/2*d*x+1/2*c)^2-1)^(1/2)*EllipticE(cos(1/2*d*x+1/2*c),2^(1/2)))*(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*
c)^2)^(1/2))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 304, normalized size of antiderivative = 1.21 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=-\frac {2 \, {\left (15 i \, \sqrt {2} {\left (5 \, A + 6 \, B + 7 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right ) - 15 i \, \sqrt {2} {\left (5 \, A + 6 \, B + 7 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right ) + 21 i \, \sqrt {2} {\left (8 \, A + 9 \, B + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) + i \, \sin \left (d x + c\right )\right )\right ) - 21 i \, \sqrt {2} {\left (8 \, A + 9 \, B + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{5} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (d x + c\right ) - i \, \sin \left (d x + c\right )\right )\right ) - {\left (42 \, {\left (8 \, A + 9 \, B + 12 \, C\right )} a^{2} \cos \left (d x + c\right )^{4} + 30 \, {\left (5 \, A + 6 \, B + 7 \, C\right )} a^{2} \cos \left (d x + c\right )^{3} + 7 \, {\left (16 \, A + 18 \, B + 9 \, C\right )} a^{2} \cos \left (d x + c\right )^{2} + 45 \, {\left (2 \, A + B\right )} a^{2} \cos \left (d x + c\right ) + 35 \, A a^{2}\right )} \sqrt {\cos \left (d x + c\right )} \sin \left (d x + c\right )\right )}}{315 \, d \cos \left (d x + c\right )^{5}} \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

-2/315*(15*I*sqrt(2)*(5*A + 6*B + 7*C)*a^2*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) + I*sin(d*x
+ c)) - 15*I*sqrt(2)*(5*A + 6*B + 7*C)*a^2*cos(d*x + c)^5*weierstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x
+ c)) + 21*I*sqrt(2)*(8*A + 9*B + 12*C)*a^2*cos(d*x + c)^5*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, c
os(d*x + c) + I*sin(d*x + c))) - 21*I*sqrt(2)*(8*A + 9*B + 12*C)*a^2*cos(d*x + c)^5*weierstrassZeta(-4, 0, wei
erstrassPInverse(-4, 0, cos(d*x + c) - I*sin(d*x + c))) - (42*(8*A + 9*B + 12*C)*a^2*cos(d*x + c)^4 + 30*(5*A
+ 6*B + 7*C)*a^2*cos(d*x + c)^3 + 7*(16*A + 18*B + 9*C)*a^2*cos(d*x + c)^2 + 45*(2*A + B)*a^2*cos(d*x + c) + 3
5*A*a^2)*sqrt(cos(d*x + c))*sin(d*x + c))/(d*cos(d*x + c)^5)

Sympy [F(-1)]

Timed out. \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\text {Timed out} \]

[In]

integrate((a+a*cos(d*x+c))**2*(A+B*cos(d*x+c)+C*cos(d*x+c)**2)/cos(d*x+c)**(11/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(11/2), x)

Giac [F]

\[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\int { \frac {{\left (C \cos \left (d x + c\right )^{2} + B \cos \left (d x + c\right ) + A\right )} {\left (a \cos \left (d x + c\right ) + a\right )}^{2}}{\cos \left (d x + c\right )^{\frac {11}{2}}} \,d x } \]

[In]

integrate((a+a*cos(d*x+c))^2*(A+B*cos(d*x+c)+C*cos(d*x+c)^2)/cos(d*x+c)^(11/2),x, algorithm="giac")

[Out]

integrate((C*cos(d*x + c)^2 + B*cos(d*x + c) + A)*(a*cos(d*x + c) + a)^2/cos(d*x + c)^(11/2), x)

Mupad [B] (verification not implemented)

Time = 4.72 (sec) , antiderivative size = 688, normalized size of antiderivative = 2.74 \[ \int \frac {(a+a \cos (c+d x))^2 \left (A+B \cos (c+d x)+C \cos ^2(c+d x)\right )}{\cos ^{\frac {11}{2}}(c+d x)} \, dx=\frac {8\,\left (\frac {2\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {B\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {5}{4};\ {\cos \left (c+d\,x\right )}^2\right )}{21\,d}-\frac {8\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {7}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {16\,A\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {5\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {18\,B\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {9\,C\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{135\,d}+\frac {2\,{{}}_2{\mathrm {F}}_1\left (-\frac {1}{4},\frac {1}{2};\ \frac {3}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {64\,A\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {21\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {5\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{9/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {72\,B\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {18\,B\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {81\,C\,a^2\,\sin \left (c+d\,x\right )}{\sqrt {\cos \left (c+d\,x\right )}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {9\,C\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{5/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{45\,d}+\frac {2\,{{}}_2{\mathrm {F}}_1\left (-\frac {3}{4},\frac {1}{2};\ \frac {1}{4};\ {\cos \left (c+d\,x\right )}^2\right )\,\left (\frac {8\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {6\,A\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {11\,B\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {3\,B\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{7/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}+\frac {14\,C\,a^2\,\sin \left (c+d\,x\right )}{{\cos \left (c+d\,x\right )}^{3/2}\,\sqrt {1-{\cos \left (c+d\,x\right )}^2}}\right )}{21\,d} \]

[In]

int(((a + a*cos(c + d*x))^2*(A + B*cos(c + d*x) + C*cos(c + d*x)^2))/cos(c + d*x)^(11/2),x)

[Out]

(8*((2*A*a^2*sin(c + d*x))/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(1/2)) + (B*a^2*sin(c + d*x))/(cos(c + d*x
)^(3/2)*(1 - cos(c + d*x)^2)^(1/2)))*hypergeom([-3/4, 1/2], 5/4, cos(c + d*x)^2))/(21*d) - (8*hypergeom([-1/4,
 1/2], 7/4, cos(c + d*x)^2)*((16*A*a^2*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2)) + (5*A*a^
2*sin(c + d*x))/(cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (18*B*a^2*sin(c + d*x))/(cos(c + d*x)^(1/2)*
(1 - cos(c + d*x)^2)^(1/2)) + (9*C*a^2*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2))))/(135*d)
 + (2*hypergeom([-1/4, 1/2], 3/4, cos(c + d*x)^2)*((64*A*a^2*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*
x)^2)^(1/2)) + (21*A*a^2*sin(c + d*x))/(cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (5*A*a^2*sin(c + d*x)
)/(cos(c + d*x)^(9/2)*(1 - cos(c + d*x)^2)^(1/2)) + (72*B*a^2*sin(c + d*x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d
*x)^2)^(1/2)) + (18*B*a^2*sin(c + d*x))/(cos(c + d*x)^(5/2)*(1 - cos(c + d*x)^2)^(1/2)) + (81*C*a^2*sin(c + d*
x))/(cos(c + d*x)^(1/2)*(1 - cos(c + d*x)^2)^(1/2)) + (9*C*a^2*sin(c + d*x))/(cos(c + d*x)^(5/2)*(1 - cos(c +
d*x)^2)^(1/2))))/(45*d) + (2*hypergeom([-3/4, 1/2], 1/4, cos(c + d*x)^2)*((8*A*a^2*sin(c + d*x))/(cos(c + d*x)
^(3/2)*(1 - cos(c + d*x)^2)^(1/2)) + (6*A*a^2*sin(c + d*x))/(cos(c + d*x)^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) +
(11*B*a^2*sin(c + d*x))/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(1/2)) + (3*B*a^2*sin(c + d*x))/(cos(c + d*x)
^(7/2)*(1 - cos(c + d*x)^2)^(1/2)) + (14*C*a^2*sin(c + d*x))/(cos(c + d*x)^(3/2)*(1 - cos(c + d*x)^2)^(1/2))))
/(21*d)